
� �

Chapter 13 Real numbers

Key terms
Real number: a number with a

fractional part.

Scientific notation: a real number
represented by a sign, some
significant digits, and a power of 10.

Two’s complement format

Example 1:
To calculate the value of this number:

The mantissa: m = 0.1001001002

The exponent: e = 0001002 = 410

The value therefore is 0.10010012 x 24 = 1001.001 = 9.12510

Example 2:
To calculate the value of this number:

The mantissa is a negative value.
Converting the two’s complement
we get: m = –0.0110111002

The exponent: e = 0001002 = 410

The value therefore is –0.01101112 x 24 = –110.1112 = –6.87510

Example 3:
 To calculate the value of this number:

The mantissa: m = 0.1010000002

The exponent is a negative value.
Converting the two’s complement
we get: e = –0000102 = –210

The value therefore is 0.1012 x 2-2 = 0.00101 = 0.1562510

IEEE standard for floating point numbers
The most common representations for real numbers use the IEEE
(Institute of Electrical and Electronics Engineers) standard. For single
precision this uses 32 bits.

The sign bit is 0 for a positive number and 1 for a negative number.
The mantissa consists of an implicit leading bit and fractional bits. The
exponent is stored in excess-127 mode. This means 127 is added to the
exponent before it is stored.

Example 4:

To calculate the value of this number:

The sign bit shows it is a positive number.

The exponent: 100000112 = 13110. The exponent is stored in excess-127
mode so e = 131 – 127 = 4

The mantissa has an implied 1-bit and so m = 1.011012

The value therefore is 1.011012 x 24 = 10110.1 = 22.510

13 Real numbers

In this topic you will cover:

how to convert a floating
point number in binary into a
denary value and vice versa

the need for normalisation

how errors occur when
representing real numbers as
floating point numbers.	







Before starting on this topic, make sure you can remember how negative
numbers are represented in two’s complement format and how real
numbers are stored as fixed-point binary numbers (See AS topic 5.1, p105).

In the context of Computing, real numbers are numbers with a fractional
part, for example 17.84.

Real numbers can be stored in fixed-point representation or in floating
point representation. Floating point representation uses a similar format
to scientific notation.

In scientific notation, denary real numbers are represented in the
following way:

A sign, some significant digits, and a power of 10.

The following are examples of real numbers using scientific notation:

7.94 x 105

-3.123 x 109

2.7 x 10-3

In floating point notation, real numbers are represented in the following
way:

A sign, some significant digits, and a power of 2.

The following are examples of real numbers using floating point notation:

4.6 x 26

–3.12 x 25

6.2 x 2-3

The general format is m x 2e

The significant digits are referred to as the mantissa (m) and the power of
2 as the exponent (e). The exponent base (2) is implicit and is not stored.

A real number can therefore be stored as a fraction m and an integer e.

Formats of floating point numbers
There are many formats that have been used over the years. Different
computer manufacturers have designed different ways of representing
floating point numbers.

�

DRAFT
DRAFT

0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0

Implied
binary point

Two’s complement
mantissa

Two’s complement
exponent

1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0

Implied
binary point

Two’s complement
mantissa

Two’s complement
exponent

0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 0

Implied
binary point

Two’s complement
mantissa

Two’s complement
exponent

0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit exponent mantissa

�

 Section 3

�

Chapter 13 Real numbers

DRAFT

Example 5:

To calculate the value of this number:

The sign bit shows it is a negative number.

The exponent: 100000112 = 13110. The exponent is stored in excess -127
mode so e = 131 – 127 = 4

The mantissa has an implied 1-bit and so m = –1.011012

The value therefore is –1.011012 x 24 = –10110.1 = –22.510

Example 6:

To calculate the value of this number:

The sign bit shows it is a positive number.

The exponent: 011111012 = 12510.
The exponent is stored in excess-127 mode so e = 125 – 127 = –2

The mantissa has an implied 1-bit and so m = 1.0112

The value therefore is 1.0112 x 2-2 = 0.01011 = 0.3437510

In the IEEE standard an exponent of all 0s or all 1s represent special
values.

All bits of the exponent are zero and all bits of the mantissa are zero:

The implied leading bit of the mantissa is then also implied to be zero.
This bit pattern is taken to represent the value zero. Note that there is a
representation for +0 and –0.

All bits of the exponent are 1 and all bits of the mantissa are zero:

The implied leading bit of the mantissa is then also implied to be zero.
This bit pattern is taken to represent infinity. Note that there is a
representation for +∞ and –∞. Operations with infinite values are defined
in IEEE floating point. For example dividing a real number by +∞ will
give the result zero.

Minifloat format
This format has been invented by universities. It uses 1 sign bit, a 5-bit
excess-15 exponent, 10 mantissa bits (with an implied 1 bit) and all
the standard IEEE rules. It is ideal for understanding the IEEE standard
without having to work with an unwieldy 32 bits.

Example 7:
To calculate the value of this number:

The sign bit shows it is a positive number.

The exponent: 100102 = 1810.
The exponent is stored in excess-15 mode so e = 18 – 15 = 3

The mantissa has an implied 1-bit and so m = 1.011012

The value therefore is 1.011012 x 23 = 1011.01 = 11.2510

Did you know?
IBM use the hexadecimal floating
point format. This uses the base 16
for the exponent.

End of Subtopic questions
1 	 Using the two’s complement format convert the following binary

floating point numbers to denary:

a 0101110010 000110

b 1010101000 000100

c 0110000000 111111

d 1010000000 111101

2 	 Using the Minifloat format, convert the following binary floating point
numbers to denary:

a 0 10100 10100 01000

b 0 01111 01100 00000

c 0 01110 01010 00000

d 1 10110 10001 11010

e 1 01101 01100 00000

f 0 11111 00000 00000

g 0 00000 00000 00000

h 1 11111 00000 00000

1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit exponent mantissa

0 0 1 1 1 1 1 0 1 0 1 1 0

sign bit exponent mantissa

Implied
binary point

Two’s complement
mantissa

Two’s complement
exponent

DRAFT

